Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis.

Identifieur interne : 000035 ( Main/Exploration ); précédent : 000034; suivant : 000036

Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis.

Auteurs : Tao Wan ; Shanren Li ; Daisy Guiza Beltran ; Andrew Schacht ; Lu Zhang ; Donald F. Becker ; Limei Zhang [États-Unis]

Source :

RBID : pubmed:31807774

Descripteurs français

English descriptors

Abstract

WhiB1 is a monomeric iron-sulfur cluster-containing transcription factor in the WhiB-like family that is widely distributed in actinobacteria including the notoriously persistent pathogen Mycobacterium tuberculosis (M. tuberculosis). WhiB1 plays multiple roles in regulating cell growth and responding to nitric oxide stress in M. tuberculosis, but its underlying mechanism is unclear. Here we report a 1.85 Å-resolution crystal structure of the [4Fe-4S] cluster-bound (holo-) WhiB1 in complex with the C-terminal domain of the σ70-family primary sigma factor σA of M. tuberculosis containing the conserved region 4 (σA4). Region 4 of the σ70-family primary sigma factors is commonly used by transcription factors for gene activation, and holo-WhiB1 has been proposed to activate gene expression via binding to σA4. The complex structure, however, unexpectedly reveals that the interaction between WhiB1 and σA4 is dominated by hydrophobic residues in the [4Fe-4S] cluster binding pocket, distinct from previously characterized canonical σ704-bound transcription activators. Furthermore, we show that holo-WhiB1 represses transcription by interaction with σA4in vitro and that WhiB1 must interact with σA4 to perform its essential role in supporting cell growth in vivo. Together, these results demonstrate that holo-WhiB1 regulates gene expression by a non-canonical mechanism relative to well-characterized σA4-dependent transcription activators.

DOI: 10.1093/nar/gkz1133
PubMed: 31807774
PubMed Central: PMC6954389


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis.</title>
<author>
<name sortKey="Wan, Tao" sort="Wan, Tao" uniqKey="Wan T" first="Tao" last="Wan">Tao Wan</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Li, Shanren" sort="Li, Shanren" uniqKey="Li S" first="Shanren" last="Li">Shanren Li</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Beltran, Daisy Guiza" sort="Beltran, Daisy Guiza" uniqKey="Beltran D" first="Daisy Guiza" last="Beltran">Daisy Guiza Beltran</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Schacht, Andrew" sort="Schacht, Andrew" uniqKey="Schacht A" first="Andrew" last="Schacht">Andrew Schacht</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lu" sort="Zhang, Lu" uniqKey="Zhang L" first="Lu" last="Zhang">Lu Zhang</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Becker, Donald F" sort="Becker, Donald F" uniqKey="Becker D" first="Donald F" last="Becker">Donald F. Becker</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Redox Biology Center.</nlm:affiliation>
<wicri:noCountry code="no comma">Redox Biology Center.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Limei" sort="Zhang, Limei" uniqKey="Zhang L" first="Limei" last="Zhang">Limei Zhang</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Redox Biology Center.</nlm:affiliation>
<wicri:noCountry code="no comma">Redox Biology Center.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31807774</idno>
<idno type="pmid">31807774</idno>
<idno type="doi">10.1093/nar/gkz1133</idno>
<idno type="pmc">PMC6954389</idno>
<idno type="wicri:Area/Main/Corpus">000180</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000180</idno>
<idno type="wicri:Area/Main/Curation">000180</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000180</idno>
<idno type="wicri:Area/Main/Exploration">000180</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis.</title>
<author>
<name sortKey="Wan, Tao" sort="Wan, Tao" uniqKey="Wan T" first="Tao" last="Wan">Tao Wan</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Li, Shanren" sort="Li, Shanren" uniqKey="Li S" first="Shanren" last="Li">Shanren Li</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Beltran, Daisy Guiza" sort="Beltran, Daisy Guiza" uniqKey="Beltran D" first="Daisy Guiza" last="Beltran">Daisy Guiza Beltran</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Schacht, Andrew" sort="Schacht, Andrew" uniqKey="Schacht A" first="Andrew" last="Schacht">Andrew Schacht</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lu" sort="Zhang, Lu" uniqKey="Zhang L" first="Lu" last="Zhang">Lu Zhang</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Becker, Donald F" sort="Becker, Donald F" uniqKey="Becker D" first="Donald F" last="Becker">Donald F. Becker</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Redox Biology Center.</nlm:affiliation>
<wicri:noCountry code="no comma">Redox Biology Center.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Limei" sort="Zhang, Limei" uniqKey="Zhang L" first="Limei" last="Zhang">Limei Zhang</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Redox Biology Center.</nlm:affiliation>
<wicri:noCountry code="no comma">Redox Biology Center.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (genetics)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Mycobacterium tuberculosis (chemistry)</term>
<term>Mycobacterium tuberculosis (genetics)</term>
<term>Mycobacterium tuberculosis (pathogenicity)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sigma Factor (chemistry)</term>
<term>Sigma Factor (genetics)</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Tuberculosis (genetics)</term>
<term>Tuberculosis (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Facteur sigma (composition chimique)</term>
<term>Facteur sigma (génétique)</term>
<term>Facteurs de transcription (composition chimique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Humains (MeSH)</term>
<term>Mycobacterium tuberculosis (composition chimique)</term>
<term>Mycobacterium tuberculosis (génétique)</term>
<term>Mycobacterium tuberculosis (pathogénicité)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes bactériens (génétique)</term>
<term>Transcription génétique (MeSH)</term>
<term>Tuberculose (génétique)</term>
<term>Tuberculose (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Sigma Factor</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Sigma Factor</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Facteur sigma</term>
<term>Facteurs de transcription</term>
<term>Ferrosulfoprotéines</term>
<term>Mycobacterium tuberculosis</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Bacterial</term>
<term>Mycobacterium tuberculosis</term>
<term>Tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur sigma</term>
<term>Facteurs de transcription</term>
<term>Ferrosulfoprotéines</term>
<term>Mycobacterium tuberculosis</term>
<term>Protéines bactériennes</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Tuberculose</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Tuberculose</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Conformation</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cristallographie aux rayons X</term>
<term>Humains</term>
<term>Régions promotrices (génétique)</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">WhiB1 is a monomeric iron-sulfur cluster-containing transcription factor in the WhiB-like family that is widely distributed in actinobacteria including the notoriously persistent pathogen Mycobacterium tuberculosis (M. tuberculosis). WhiB1 plays multiple roles in regulating cell growth and responding to nitric oxide stress in M. tuberculosis, but its underlying mechanism is unclear. Here we report a 1.85 Å-resolution crystal structure of the [4Fe-4S] cluster-bound (holo-) WhiB1 in complex with the C-terminal domain of the σ70-family primary sigma factor σA of M. tuberculosis containing the conserved region 4 (σA4). Region 4 of the σ70-family primary sigma factors is commonly used by transcription factors for gene activation, and holo-WhiB1 has been proposed to activate gene expression via binding to σA4. The complex structure, however, unexpectedly reveals that the interaction between WhiB1 and σA4 is dominated by hydrophobic residues in the [4Fe-4S] cluster binding pocket, distinct from previously characterized canonical σ704-bound transcription activators. Furthermore, we show that holo-WhiB1 represses transcription by interaction with σA4in vitro and that WhiB1 must interact with σA4 to perform its essential role in supporting cell growth in vivo. Together, these results demonstrate that holo-WhiB1 regulates gene expression by a non-canonical mechanism relative to well-characterized σA4-dependent transcription activators.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31807774</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis.</ArticleTitle>
<Pagination>
<MedlinePgn>501-516</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkz1133</ELocationID>
<Abstract>
<AbstractText>WhiB1 is a monomeric iron-sulfur cluster-containing transcription factor in the WhiB-like family that is widely distributed in actinobacteria including the notoriously persistent pathogen Mycobacterium tuberculosis (M. tuberculosis). WhiB1 plays multiple roles in regulating cell growth and responding to nitric oxide stress in M. tuberculosis, but its underlying mechanism is unclear. Here we report a 1.85 Å-resolution crystal structure of the [4Fe-4S] cluster-bound (holo-) WhiB1 in complex with the C-terminal domain of the σ70-family primary sigma factor σA of M. tuberculosis containing the conserved region 4 (σA4). Region 4 of the σ70-family primary sigma factors is commonly used by transcription factors for gene activation, and holo-WhiB1 has been proposed to activate gene expression via binding to σA4. The complex structure, however, unexpectedly reveals that the interaction between WhiB1 and σA4 is dominated by hydrophobic residues in the [4Fe-4S] cluster binding pocket, distinct from previously characterized canonical σ704-bound transcription activators. Furthermore, we show that holo-WhiB1 represses transcription by interaction with σA4in vitro and that WhiB1 must interact with σA4 to perform its essential role in supporting cell growth in vivo. Together, these results demonstrate that holo-WhiB1 regulates gene expression by a non-canonical mechanism relative to well-characterized σA4-dependent transcription activators.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Shanren</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beltran</LastName>
<ForeName>Daisy Guiza</ForeName>
<Initials>DG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schacht</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lu</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Donald F</ForeName>
<Initials>DF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Redox Biology Center.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>LiMei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Redox Biology Center.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012808">Sigma Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C574744">WhiB1 protein, Mycobacterium tuberculosis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009169" MajorTopicYN="N">Mycobacterium tuberculosis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012808" MajorTopicYN="N">Sigma Factor</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014376" MajorTopicYN="N">Tuberculosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31807774</ArticleId>
<ArticleId IdType="pii">5661089</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkz1133</ArticleId>
<ArticleId IdType="pmc">PMC6954389</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19830-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Feb 2;133(4):1112-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21182249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 30;318(5855):1464-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16249335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 May 18;534(7606):281-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27279229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 1998 Apr;2(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9667933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Sep;188(17):6081-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Dec 18;284(5):1353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 May 15;17(10):1293-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Jun;174(12):3843-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1597408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Dec 13;87(6):1123-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8978616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Apr;186(7):1911-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15028674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:523-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9048379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Aug;37(4):687-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1997;15:323-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9143691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e37516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22829866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Dec 25;267(36):25625-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1464583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3147-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2016 May;162(5):889-897</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26887897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Sep 11;325(5946):1380-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Dec 22;8(1):2280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29273788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22792304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(10):e1002708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23093919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Aug 6;401(1):13-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20595001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Apr 1;16(7):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22010944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1996 Mar;142 ( Pt 3):667-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8868442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 2;287(1):299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22069311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Sep 13;33(36):10911-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8086408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Jul;29(2):617-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9720877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2019 Jun 10;201(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30962353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Mar;9(3):527-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Jan;565(7739):382-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30626968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1998 Dec;22(5):341-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12642660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2010 Sep;64(2):69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20434484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Apr;232(3):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1316997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Mar 06;10(3):e1003994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24603869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tuberculosis (Edinb). 2012 Jul;92(4):328-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22464736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Jun 8;419(3-4):139-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):135-145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28884485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26040003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 14;6:22922</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26972108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2012;66:125-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1421-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Feb 26;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29480804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2019 Feb;111(2):514-533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30480837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Aug 4;23(15):2952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15257291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Dec 15;432(3):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20929442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jul 13;8:16072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28703128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2014 Oct 21;47(10):3196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25262769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2019 Aug;65(4):871-876</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30830258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Apr 20;8:15052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28425466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Aug;73(4):680-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Oct;14(10):638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27498839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 May;38(3):345-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24164321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jun 10;352(6291):1330-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27284196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Dec 20;29(18):1830-1840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28990402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Feb;34(Pt 1):200-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16417522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Apr 19;288(16):11492-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23471974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2015 Dec 04;1(11):e1501086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26665177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Feb;4(2):147-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Jan 09;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28067618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Oct;42(2):383-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11703662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Dec;41(22):10062-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23990327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9440-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Nebraska</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Becker, Donald F" sort="Becker, Donald F" uniqKey="Becker D" first="Donald F" last="Becker">Donald F. Becker</name>
<name sortKey="Beltran, Daisy Guiza" sort="Beltran, Daisy Guiza" uniqKey="Beltran D" first="Daisy Guiza" last="Beltran">Daisy Guiza Beltran</name>
<name sortKey="Li, Shanren" sort="Li, Shanren" uniqKey="Li S" first="Shanren" last="Li">Shanren Li</name>
<name sortKey="Schacht, Andrew" sort="Schacht, Andrew" uniqKey="Schacht A" first="Andrew" last="Schacht">Andrew Schacht</name>
<name sortKey="Wan, Tao" sort="Wan, Tao" uniqKey="Wan T" first="Tao" last="Wan">Tao Wan</name>
<name sortKey="Zhang, Lu" sort="Zhang, Lu" uniqKey="Zhang L" first="Lu" last="Zhang">Lu Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Nebraska">
<name sortKey="Zhang, Limei" sort="Zhang, Limei" uniqKey="Zhang L" first="Limei" last="Zhang">Limei Zhang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000035 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000035 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31807774
   |texte=   Structural basis of non-canonical transcriptional regulation by the σA-bound iron-sulfur protein WhiB1 in M. tuberculosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31807774" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020